Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Neurocomputing ; 2023.
Article in English | EuropePMC | ID: covidwho-2288549

ABSTRACT

The mutant strains of COVID-19 caused a global explosion of infections, including many cities of China. In 2020, a hybrid AI model was proposed by Zheng et al., which accurately predicted the epidemic in Wuhan. As the main part of the hybrid AI model, ISI method makes two important assumptions to avoid over-fitting. However, the assumptions cannot be effectively applied to new mutant strains. In this paper, a more general method, named the multi-weight susceptible-infected model (MSI) is proposed to predict COVID-19 in Chinese Mainland. First, a Gaussian pre-processing method is proposed to solve the problem of data fluctuation based on the quantity consistency of cumulative infection number and the trend consistency of daily infection number. Then, we improve the model from two aspects: changing the grouped multi-parameter strategy to the multi-weight strategy, and removing the restriction of weight distribution of viral infectivity. Experiments on the outbreaks in many places in China from the end of 2021 to May 2022 show that, in China, an individual infected by Delta or Omicron strains of SARS-CoV-2 can infect others within 3-4 days after he/she got infected. Especially, the proposed method effectively predicts the trend of the epidemics in Xi'an, Tianjin, Henan, and Shanghai from December 2021 to May 2022.

2.
Neurocomputing ; 534: 161-170, 2023 May 14.
Article in English | MEDLINE | ID: covidwho-2288553

ABSTRACT

The mutant strains of COVID-19 caused a global explosion of infections, including many cities of China. In 2020, a hybrid AI model was proposed by Zheng et al., which accurately predicted the epidemic in Wuhan. As the main part of the hybrid AI model, ISI method makes two important assumptions to avoid over-fitting. However, the assumptions cannot be effectively applied to new mutant strains. In this paper, a more general method, named the multi-weight susceptible-infected model (MSI) is proposed to predict COVID-19 in Chinese Mainland. First, a Gaussian pre-processing method is proposed to solve the problem of data fluctuation based on the quantity consistency of cumulative infection number and the trend consistency of daily infection number. Then, we improve the model from two aspects: changing the grouped multi-parameter strategy to the multi-weight strategy, and removing the restriction of weight distribution of viral infectivity. Experiments on the outbreaks in many places in China from the end of 2021 to May 2022 show that, in China, an individual infected by Delta or Omicron strains of SARS-CoV-2 can infect others within 3-4 days after he/she got infected. Especially, the proposed method effectively predicts the trend of the epidemics in Xi'an, Tianjin, Henan, and Shanghai from December 2021 to May 2022.

3.
IEEE Trans Cybern ; 50(7): 2891-2904, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-251794

ABSTRACT

The coronavirus disease 2019 (COVID-19) breaking out in late December 2019 is gradually being controlled in China, but it is still spreading rapidly in many other countries and regions worldwide. It is urgent to conduct prediction research on the development and spread of the epidemic. In this article, a hybrid artificial-intelligence (AI) model is proposed for COVID-19 prediction. First, as traditional epidemic models treat all individuals with coronavirus as having the same infection rate, an improved susceptible-infected (ISI) model is proposed to estimate the variety of the infection rates for analyzing the transmission laws and development trend. Second, considering the effects of prevention and control measures and the increase of the public's prevention awareness, the natural language processing (NLP) module and the long short-term memory (LSTM) network are embedded into the ISI model to build the hybrid AI model for COVID-19 prediction. The experimental results on the epidemic data of several typical provinces and cities in China show that individuals with coronavirus have a higher infection rate within the third to eighth days after they were infected, which is more in line with the actual transmission laws of the epidemic. Moreover, compared with the traditional epidemic models, the proposed hybrid AI model can significantly reduce the errors of the prediction results and obtain the mean absolute percentage errors (MAPEs) with 0.52%, 0.38%, 0.05%, and 0.86% for the next six days in Wuhan, Beijing, Shanghai, and countrywide, respectively.


Subject(s)
Artificial Intelligence , Betacoronavirus , Coronavirus Infections/epidemiology , Models, Statistical , Pneumonia, Viral/epidemiology , COVID-19 , China/epidemiology , Humans , Natural Language Processing , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL